Data and Variable Transformation Functions


[Up] [Top]

Documentation for package ‘sjmisc’ version 2.7.4

Help Pages

sjmisc-package Data and Variable Transformation Functions
%nin% Value matching
add_columns Add or replace data frame columns
add_rows Merge labelled data frames
all_na Check if vector only has NA values
big_mark Format numbers
center Standardize and center variables
center_if Standardize and center variables
col_count Count row or column indices
complete_cases Check if variables or cases have missing / infinite values
complete_vars Check if variables or cases have missing / infinite values
count_na Frequency table of tagged NA values
descr Basic descriptive statistics
dicho Dichotomize variables
dicho_if Dichotomize variables
efc Sample dataset from the EUROFAMCARE project
empty_cols Return or remove variables or observations that are completely missing
empty_rows Return or remove variables or observations that are completely missing
find_var Find variable by name or label
flat_table Flat (proportional) tables
frq Frequency table of labelled variables
group_labels Recode numeric variables into equal-ranged groups
group_labels_if Recode numeric variables into equal-ranged groups
group_str Group near elements of string vectors
group_var Recode numeric variables into equal-ranged groups
group_var_if Recode numeric variables into equal-ranged groups
has_na Check if variables or cases have missing / infinite values
incomplete_cases Check if variables or cases have missing / infinite values
incomplete_vars Check if variables or cases have missing / infinite values
is_crossed Check whether two factors are crossed or nested
is_cross_classified Check whether two factors are crossed or nested
is_empty Check whether string, list or vector is empty
is_even Check whether value is even or odd
is_float Check if a variable is of (non-integer) double type or a whole number
is_nested Check whether two factors are crossed or nested
is_num_fac Check whether a factor has numeric levels only
is_odd Check whether value is even or odd
is_whole Check if a variable is of (non-integer) double type or a whole number
merge_df Merge labelled data frames
merge_imputations Merges multiple imputed data frames into a single data frame
numeric_to_factor Convert numeric vectors into factors associated value labels
prcn Format numbers
rec Recode variables
recode_to Recode variable categories into new values
recode_to_if Recode variable categories into new values
rec_if Recode variables
rec_pattern Create recode pattern for 'rec' function
ref_lvl Change reference level of (numeric) factors
remove_cols Remove variables from a data frame
remove_empty_cols Return or remove variables or observations that are completely missing
remove_empty_rows Return or remove variables or observations that are completely missing
remove_var Remove variables from a data frame
replace_columns Add or replace data frame columns
replace_na Replace NA with specific values
rotate_df Rotate a data frame
round_num Round numeric variables in a data frame
row_count Count row or column indices
row_means Row sums and means for data frames
row_means.default Row sums and means for data frames
row_means.mids Row sums and means for data frames
row_sums Row sums and means for data frames
row_sums.default Row sums and means for data frames
row_sums.mids Row sums and means for data frames
set_na Replace specific values in vector with NA
set_na_if Replace specific values in vector with NA
shorten_string Shorten character strings
sjmisc Data and Variable Transformation Functions
split_var Split numeric variables into smaller groups
split_var_if Split numeric variables into smaller groups
spread_coef Spread model coefficients of list-variables into columns
std Standardize and center variables
std_if Standardize and center variables
str_contains Check if string contains pattern
str_end Find start and end index of pattern in string
str_pos Find partial matching and close distance elements in strings
str_start Find start and end index of pattern in string
total_mean Row sums and means for data frames
to_character Convert variable into character vector and replace values with associated value labels
to_dummy Split (categorical) vectors into dummy variables
to_factor Convert variable into factor and keep value labels
to_label Convert variable into factor with associated value labels
to_long Convert wide data to long format
to_value Convert factors to numeric variables
trim Trim leading and trailing whitespaces from strings
var_rename Rename variables
var_type Determine variable type
word_wrap Insert line breaks in long labels
zap_inf Convert infiite or NaN values into regular NA